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Abstract

Ando established an algebraic criterion for when a complex orientation for a Morava

E-theory is an H∞ map. The criterion relates such an orientation to a specific property

of the formal group associated to the E-theory, namely, a norm coherence condition on

its coordinate. On the other hand, Coleman constructed a norm operator for interpolating

division values in local fields, which depends on a Lubin–Tate formal group law. These

formal group laws are important tools in explicit local class field theory.

In this article, we give a conceptual proof for Ando’s theorem using the Coleman norm

operator via the bridge of formal group laws between topology and arithmetic.
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1 Introduction

The purpose of this article is to supply a number-theoretic, conceptual proof for an old, topologi-

cal theorem ofMatthewAndo’s from his study of structured ring spectra and their multiplicative

operations. We follow a suggestion by Charles Rezk and Yifei Zhu (cf. [Zhu20, Remark 1.3]).

• We identify Ando’s algebraic criterion forH∞ complex orientations ofMorava E-theories

as a coherence condition for certain division values in local fields with respect to a Cole-

man norm operator.

• We then coherently construct these division values by an infinite iteration of the operator.

In a concrete way, the ingredients going into the proof hint towards a higher-algebraic theory

for class fields (cf., e.g., [BSY22]).

Throughout, k denotes a perfect field of characteristic p > 0, R denotes a complete local

ring with maximal ideal m and whose residue field R/m contains k. Given a formal group law

F ∈ RJX,Y K, we will write X +F Y := F (X,Y ).

Morava E-theories En are complex oriented cohomology theories in stable homotopy the-

ory, whose coefficient ring (En)∗ in degree 0 classifies deformations of a 1-dimensional formal

group lawG of height n over k to R. Each E-theory is represented by an E∞-spectrum [GH04,

Corollary 7.6] and carries power operations associated to this multiplicative structure. LetMU

be the complex cobordism theory. It is well-known that MU also admits power operations

( [tD68] and [May77, §IV.2]). A complex orientation on En is a mapMU → En of homotopy

commutative ring spectra. Upon taking the connective cover MU〈0〉, this is equivalent to a

coordinate (i.e., local uniformizer) of the universal deformation formal group associated with

En, which in turn determines a formal group law [Zhu20, Section 2]. In the case that G is a

Honda formal group law over Fp, Ando gave a criterion for when power operations onMU and

En are compatible along the map MU → En, i.e., when this map is H∞ [And95, Theorem 5].

The criterion is formulated in terms of the formal group law F of the universal deformation

associated to the coordinate.

Theorem 1.1 ( [And95, Theorem 4]). Suppose k = Fp and G is the Honda formal group law

of height n over k, so that [p]G(T ) = T p
n , where [p]G is the p-series of G. Then in each ⋆-

isomorphism class of lifts of G to π0(En) ∼= W (k)Ju1, · · · , un−1K, there is a unique lift F such
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that

[p]F (T ) =
∏
λ

(T +F λ)

where the product runs over all roots λ of [p]F .

Such a coordinate is said to be norm-coherent, in that the right-hand side has the form of

a norm map. The condition says that the canonical lift of Frobenius, which is just the map of

multiplication by p corresponding to the p-series in this case, coincides with the norm map. For

a detailed discussion about the condition, see Section 4 and [Zhu20, Section 6].

On the number-theoretic side, an important tool invented in Lubin and Tate’s explicit con-

struction of the local Artin map in local class field theory is the family of Lubin–Tate formal

group laws. Suppose a prime number p is a uniformizer of a local fieldK, i.e.,K is an unrami-

fied extension ofQp. Then a Lubin–Tate formal group law reduces to a Honda formal group law

over the residue field. In 1979, Coleman proved an interpolation theorem on division values

in local fields, with applications to p-adic L-functions and modular units [Col79, Theorem A].

For that, he constructed a norm operator NF depending on a Lubin–Tate formal group law F

such that

NF (g) ◦ [p]F (T ) =
∏

{λ : [p]F (λ)=0}

g(T +F λ)

Rezk conjectured that the Coleman norm and Ando’s algebraic criteria were closely related.

Here, we prove Theorem 1.1 via the norm operators NF .

In more detail, the original definition of a norm operator restricts to the special case when

R is a complete discrete valuation ring with uniformizer p. We shall first give a description for

Coleman’s norm operators and prove Ando’s theorem in this special case. Our proof will only

depend on several properties of the norm operators and do not require G to be a Honda formal

group law. In view of this, we will generalize the definition of a norm operator to complete

local domains in which p 6= 0, and show that the generalized norm operator satisfies the desired

properties. In particular, π0(En) is a complete local domain with p 6= 0. The main result of this

article is the following.

Theorem 1.2. Suppose G is a formal group law of finite height over k and R is a complete

local domain with p 6= 0 whose residue field contains k. Then in each ⋆-isomorphism class of

lifts of G to R, there is a unique lift whose corresponding coordinate is norm-coherent.

A more precise and explicit formulation of Theorem 1.2 will be given as Theorem 4.8.

3



Remark 1.3. Zhu generalized the above theorem to apply to arbitrary complete local rings R

following the original proof by Ando [Zhu20, Theorem 1.2]. It would be interesting to have an

alternative approach from number-theoretic constructions in this generality.

2 Coleman norm operators from explicit local class field the-

ory after Lubin and Tate

In this section, suppose that k = Fq with q = pn. Suppose K is a local field with integer ring

OK , maximal ideal m, and residue field k. Pick a uniformizer π of OK and let

Fπ := {α(T ) ∈ OKJT K : α(T ) ≡ πT mod T 2, α(T ) ≡ T q mod π} (1)

In explicit local class field theory, we have the following.

Proposition 2.1. For any α ∈ Fπ, there is a unique formal group law Fα over OK such that

α ∈ End(Fα).

Proof. See [Mil20, I, 2.12].

Proposition 2.2. (a) For any α, β ∈ Fπ and a ∈ OK , there is a unique element [a]β,α(T ) in

TOKJT K such that [a]β,α(T ) ≡ aT mod T 2 and [a]β,α ∈ Hom(Fα, Fβ).

(b) Moreover, the map a 7→ [a]α,α(T ) gives an isomorphism OK → End(Fα). In particular,

α(T ) = [π]α,α(T ).

Proof. See [Mil20, I, 2.14 and 2.17].

The formal group laws Fα characterized by Proposition 2.1 are the Lubin–Tate formal

group laws. Let α ∈ Fπ and α = α̃v for some unit v ∈ OKJT K and some polynomial

α̃ ∈ OK [T ] by the Weierstrass preparation theorem. We then define a finite set

Λα,1 := {roots of α̃ in a fixed algebraic closure of K} (2)

Suppose OK((T )) is the ring of formal Laurent series with coefficients in OK . We assign the

“compact–open” topology to OK((T )), i.e., a sequence {gn} converges to g if and only if for

any compact subset A not containing 0 in m, and for each ϵ > 0, there exists a positive integer
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N = N(A, ϵ) such that |gn(a) − g(a)| < ϵ for all a ∈ A and n ⩾ N . Given a Lubin–Tate

formal group law Fα, the Coleman norm operator is characterized by the following.

Theorem 2.3 ( [Col79, Theorem 11 and Corollary 12]). As notations above, there exists a

unique function NFα : OK((T )) → OK((T )) satisfying

NFα(g) ◦ [p]Fα(T ) =
∏

λ∈Λα,1

g(T +Fα λ)

for every g ∈ OK((T )). Moreover, NFα is continuous and multiplicative.

The norm operator has the following properties.

Lemma 2.4. Let i ⩾ 1, g ∈ 1 +miJT K and h be a unit in OK((T )). Then

(a) NFα(g) ∈ 1 +mi+1JT K and
(b) N i

Fα
(h)/N i−1

Fα
(h) ∈ 1 + miJT K, where N i

Fα
denotes i iterations of applying the norm

operator NFα .

Proof. See [Col79, Lemma 13]. Here, part (b) looks different from [Col79, Lemma 13(b)],

N i
Fα
(h)/ϕN i−1

Fα
(h) ∈ 1 + πiOKJT K, where ϕ ∈ Gal(H/K) is the Frobenius map for a com-

plete unramified extensionH/K and π is the corresponding uniformizer. For our applications,

we need only consider K itself with ϕ the identity.

As a consequence of Lemma 2.4(b), the sequence {N i
Fα
(h)} converges in OK((T )). Let

N ∞
Fα

(h) := lim
i→∞

N i
Fα
(h). In particular, by Lemma 2.4(a), we have that

N ∞
Fα

(
1 +mJT K) = 1 (3)

Since NFα is continuous,

NFα

(
N ∞
Fα

(h)
)
= NFα

(
lim
i→∞

N i
Fα
(h)

)
= lim

i→∞
NFα

(
N i
Fα
(h)

)
= N ∞

Fα
(h)

Moreover, the operatorN ∞
Fα

is multiplicative since NFα is.

3 Proof of Ando’s theorem in a special case

We will first prove Theorem 1.1 (and 1.2) in a special case using Coleman norm operators.
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In this section, suppose that K is an unramified extension of Qp of degree n and G is the

Honda formal group law over k ∼= Fpn of height n. Here, p is a uniformizer of K.

In (1), choose the uniformizer π = p. Given any α ∈ Fπ, let Fα be the associated Lubin–

Tate formal group law so that [p]Fα(T ) = [π]α,α(T ) = α(T ) by Proposition 2.2(b). Thus, Fα is

a lift of G to OK . Conversely, every lift of G to OK has p-series in Fπ, so by the uniqueness

in Proposition 2.1 it is a Lubin–Tate formal group law.

Definition 3.1 (⋆-isomorphisms). Two formal group laws F, F ′ over OK are said to be ⋆-

isomorphic if there is an isomorphism u : F → F ′ such that u restricts to the identity series

to k. A more general definition of ⋆-isomorphism will be given in Section 4.

Theorem 3.2. With notations as above and in (2), in each ⋆-isomorphism class of lifts of G to

OK , there is a unique formal group law F = Fα, necessarily a Lubin–Tate formal group law

for some α ∈ Fπ, satisfying

[p]Fα(T ) =
∏

λ∈Λα,1

(T +Fα λ) (4)

To prove this special case of Ando’s theorem, we proceed as follows. In terms of the norm

operator, we see that a Lubin–Tate formal group law satisfies (4) if and only if

[p]Fα(T ) =
∏

λ∈Λα,1

(T +Fα λ) =
(
NFα(T ) ◦ [p]Fα

)
(T ) (5)

Since p is invertible in K, [p]Fα has a composition inverse in KJT K. We can thus cancel the

term from both sides above, so that condition (4) is equivalent to

NFα(T ) = T (6)

Begin with any lift Fα of G to OK . Let u ∈ T + πTOKJT K = T + TmJT K. Then there is an
element αu ∈ Fπ such that u ◦ Fα ◦ u−1 = Fαu . Indeed, since α = [p]Fα and αu = [p]Fαu

,

we have αu = u ◦ α ◦ u−1. Clearly Fα and Fαu are ⋆-isomorphic. In order to show that there

is a unique u ∈ T + TmJT K such that Fαu satisfies (4), we are reduced to show that there is a

unique u ∈ T + TmJT K such that
NFαu

(T ) = T (7)
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Note that u induces a bijection from Λα,1 to Λαu,1. By definition,

(
NFαu

(T ) ◦ [p]Fαu

)
(T ) =

∏
λ∈Λαu,1

(T +Fαu
λ)

We rewrite this identity as follows:

(
NFαu

(T ) ◦ u ◦ [p]Fα ◦ u−1
)
(T ) =

∏
λ∈Λα,1

(
T +Fαu

u(λ)
)

=
∏

λ∈Λα,1

Fαu

(
u
(
u−1(T )

)
, u(λ)

)
=

∏
λ∈Λα,1

u ◦ Fα
(
u−1(T ), λ

)
=

∏
λ∈Λα,1

u ◦
(
u−1(T ) +Fα λ

)
=

(
NFα(u) ◦ [p]Fα

)(
u−1(T )

)
By canceling [p]Fα ◦ u−1 from both sides, we obtain

(
NFαu

(T ) ◦ u
)
(T ) = NFα(u)(T ). There-

fore, (7) is equivalent to

NFα(u) = u

Consequently, it remains to show the following.

Proposition 3.3. Given any α ∈ Fπ, there is a unique u ∈ T +TmJT K, such that NFα(u) = u.

Proof. Existence: By Lemma 2.4(b), let hi := N i
Fα
(T )/N i−1

Fα
(T ) ∈ 1+miJT K. Then we have

N ∞
Fα

(T ) = Th1h2 · · · . It is easy to see that h1h2 · · · ∈ 1 +mJT K, so N ∞
Fα

(T ) ∈ T + TmJT K.
Therefore, u = N ∞

Fα
(T ) satisfies the condition.

Uniqueness: If NFα(u) = u, then N i
Fα
(u) = u for each i. Thus, N ∞

Fα
(u) = u after taking

the limit. Since u ∈ T + TmJT K, there is ũ ∈ 1 + mJT K such that u = T ũ. Then, in view of

(3),

u = N ∞
Fα

(u) = N ∞
Fα

(T )N ∞
Fα

(ũ) = N ∞
Fα

(T )

Remark 3.4. We can interpret the equality NFα(u) = u as a condition of norm coherence in

the context of [Col79]. To be precise, suppose Λα,n is the set of roots of [pn]Fα in the fixed

algebraic closure of K. Let Kπ,n := K(Λα,n) and Nn+1,n := NKπ,n+1/Kπ,n be the norm map.
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It can be shown that Λα,n ∼= OK/m
n [Mil20, I, 3.4]. Suppose vn is a generator of Λα,n as an

OK-module for each n such that [p]Fα(vn+1) = vn. We then have

NFα(u)(vn) = Nn+1,n

(
u(vn+1)

)
by [Col79, Corollary 12(ii)]. Thus, NFα(u) = u is equivalent to saying that

u(vn) = Nn+1,n

(
u(vn+1)

)
i.e., u transforms the sequence {vn} to a sequence compatible with the norm maps.

Remark 3.5. Let M∞,α = {g ∈ OK((T ))
∗ : NFα(g) = g} be the subset inOK((T ))

∗ consisting

of norm-coherent series in the sense above. Then the uniqueness of u follows from an exact

sequence of groups.

1 → 1 +mJT K → OK((T ))
× N ∞

Fα−→ M∞,α → 1

as in [Col79, Proposition 14].

4 Norm coherence condition

In a more general case of Theorem 3.2, the left-hand side of (4) should not simply be [p]Fα(T ).

Indeed, it should be a canonical lift of the relative Frobenius map. To define this lift, we have

to first recall some notions in formal groups and deformations of formal group laws.

Suppose F is a formal group over R and G is a formal group over k of finite height n. Let

F and G be the respective formal group laws associated to chosen coordinates of these formal

groups. Let X be a chosen coordinate on F .

Definition 4.1 (Quotients of formal groups). SupposeD is a subgroup ofF of degree pr defined

over a complete local ring S containing R. Then we define the quotient group F/D over S as

follows. Letm : F×D → F be the multiplication map and pr1 : F×D → F be the projection

onto the first factor. The coordinate ring of F/D is defined by the equalizer

OF/D OF OF×D
pr∗1

m∗f∗D
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It can be shown that F/D is a formal group over S. In addition, viewing OF as an OF/D-

module through f ∗
D, we obtain XD = Normf∗D

(X) as a coordinate of F/D [Str97, Theorem

19].

If D(S) contains exactly pr elements, then

f ∗
D(XD) =

∏
P∈D(S)

(
X +F X(P )

)
(8)

by direct calculation. Thus, reducing (8) to the residue field of R we have

f ∗
D(XD) ≡ Xpr mod m (9)

Notation. For simplicity, from now on, we will not distinguish an isogeny between formal

groups and the power series to which it corresponds as a map between coordinate rings. For

instance, we will simply write

fD(T ) =
∏

P∈D(S)

(
T +F X(P )

)
as an isogeny between formal group laws.

The following definition generalizes Definition 3.1.

Definition 4.2 (Deformations of formal group laws and ⋆-isomorphisms). Let π : R → R/m be

the natural projection. A deformation of G to R is a triple (F, i, η), where F is a formal group

law over R, i : k → R/m is an inclusion and η : π∗(F ) → i∗(G) is an isomorphism. Here π

and i act on each coefficient.

Suppose (F, i, η) and (F ′, i′, η′) are two deformations of G to R such that i = i′. Then we

say (F, i, η) and (F ′, i′, η′) are ⋆-isomorphic if there is an isomorphism ψ : F → F ′ of formal

group laws such that η′ ◦ π∗(ψ) = η.

Furthermore, if η = η′ and π∗(ψ) = id, we call ψ : F → F ′ a ⋆-isomorphism as well.

Definition 4.3 (Deformations of Frobenius). Suppose Φ is the relative Frobenius map on G

over k and σ is the absolute Frobenius map over k. Suppose (F, i, η) and (F ′, i′, η′) are two

deformations ofG to R. An isogeny ψ : F → F ′ of degree pr is a deformation of Frobenius if

i′ = i ◦ σr, and η′ ◦ π∗(ψ) = i∗(Φr) ◦ η, i.e., the following diagram commutes.
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F π∗(F) i∗(G)

i∗(G(pr))

F ′ π∗(F ′) i′∗(G)

ψ π∗(ψ)

i∗(Φr)

η

η′

Two deformations of Frobenius (F1, i1, η1) → (F ′
1, i

′
1, η

′
1) and (F2, i2, η2) → (F ′

2, i
′
2, η

′
2)

are isomorphic if (F1, i1, η1), (F2, i2, η2) are ⋆-isomorphic and (F ′
1, i

′
1, η

′
1), (F

′
2, i

′
2, η

′
2) are ⋆-

isomorphic.

The following theorem classifies deformations of Frobenius.

Theorem 4.4 (cf. [Str97, Theorem 42]). There is a universal deformation (Funiv, id, id) of G

to the Lubin–Tate ringW (k)Ju1, · · · , un−1K, in the following sense. For each r ⩾ 0, there is a

complete local ring Ar such that

{deformations (F, i, η) → (F ′, i′, η′) of Φr to T}/isomorphisms ∼= Hom(Ar, T )

Moreover, A0 = W (k)Ju1, · · · , un−1K and Ar is a bimodule over A0 with structure maps

sr, tr : A0 → Ar, which are local homomorphisms.

The isomorphism is given as follows: for any deformation (F, i, η) → (F ′, i′, η′) of Φr to

T , there is a unique local homomorphism ρr : Ar → T such that ρr ◦ sr and ρr ◦ tr restrict to

i and i′ on the residue fields respectively and that there are unique ⋆-isomorphisms (F, i, η) →

(ρr∗sr∗Funiv, i, id) and (F ′, i′, η′) → (ρr∗tr∗Funiv, i
′, id).

Remark 4.5. According to [Zhu20, Remark 6.2], given any deformation (F, i, η) of G to R,

there exists a unique deformation (F̃ , i, id) given by [LT66, Theorem 3.1] such that the two

deformations are ⋆-isomorphic. Thus, we will assume η = id in the following.

Suppose from now on that (F, i, id) is a deformation ofG toR, whereR is a complete local

domain with p 6= 0.

Since [p]F ≡ [p]G mod m and G has height n < ∞, not all coefficients of [p]F are in m.

By the Weierstrass preparation theorem, there is a unit v in RJT K and a monic polynomial β of

degree pn, such that [p]F = v · β. Note that roots of [p]F are the same as the roots of β. Let

Λ[p]F ,1 := {roots of [p]F in a larger ring S obtained from R by adjoining roots of β} (10)
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Since p 6= 0 in R, 0 is a simple root of [p]F . For any λ ∈ Λ[p]F ,1, [p]F
(
T −F λ

)
= [p]F (T ).

Therefore, λ is also a simple root of [p]F . We conclude that the set Λ[p]F ,1 has exactly pn ele-

ments.

LetD := F [p] be the subgroup ofF of p-torsions defined over S. Then the quotient isogeny

fp : F → F/F [p] is given by

fp(T ) =
∏

λ∈Λ[p]F ,1

(
T +F λ

)

Note that fp(T ) is invariant under the action of Aut(S/R), so fp(T ) ∈ RJT K. As a consequence,
F/F [p] can be defined over R. Thus, fp is a deformation of Frobenius between (F, i, id) and

(F/F [p], i ◦σn, id) in view of (9). By Theorem 4.4, there exists a unique local homomorphism

ρn : An → R with a unique ⋆-isomorphism gp : F/F [p] → ρn∗tn∗Funiv.

Definition 4.6. Define

lp := gp ◦ fp : F → ρn∗tn∗Funiv

Remark 4.7. According to [Zhu20, Remark 6.7], the isogeny lp is an isogeny of formal group

laws over R characterized by the following properties.

(a) It is an isogeny from F to ρn∗tn∗Funiv.

(b) The kernel of lp is the same as that of [p]F .

(c) The reduction of lp to the residue field is the pn-power relative FrobeniusT p
n , i.e., lp(T ) ≡

T p
n

mod m.

To proceed to the general case, we formulate the norm coherence condition of Theorem 1.2

precisely as follows.

Theorem 4.8. Suppose R is a complete local domain with p 6= 0 and residue field containing

k. In each ⋆-isomorphism class of deformations of G to R, there is a unique element (F, i, id)

such that

lp(T ) = fp(T ) =
∏

λ∈Λ[p]F ,1

(
T +F λ

)
(11)

i.e., gp(T ) = T .

Remark 4.9. According to the proof for [Zhu20, Proposition 7.1], the coordinate given by

Theorem 4.8 is norm-coherent with respect to any finite subgroupD ⊂ F in the sense of [Zhu20,

Definition 6.21].
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Remark 4.10. Back to the topological side, an orientation on the Morava E-theory En cor-

responds to a coordinate on the formal group Spf
(
π0
(
E

CP∞
+

n

))
[AHS01, Example 2.53], so it

induces a deformation (F, i, η) ofG to π0
(
E

CP∞
+

n

)
. A change of orientation on En will induce a

⋆-isomorphism between the induced deformations [Zhu20, Example 4.9]. One should be aware

that the ⋆-isomorphism here may change the η-component. Recall that we set η = id in Remark

4.5. Thus, Theorem 4.8 implies that there is a unique H∞-orientation MU〈0〉 → En such that

the induced deformation has η = id and satisfies (11).

In general, we say a deformation (F, i, η) (also the orientation inducing this deformation)

is norm-coherent if the component F̃ in (F̃ , i, id) is norm-coherent in the sense of (11), where

the latter deformation is given by Remark 4.5 (cf. [Zhu20, Definition 6.21]). Therefore, there is

only a family of norm-coherent orientations on En, which are ⋆-isomorphic to the deformation

(F, i, id) given by Theorem 4.8.

5 Generalization of the norm operators

In this section, we aim to prove Theorem 4.8 (and hence Theorem 1.2) following the proof of

the special case in Section 3. Observe that our earlier proof actually only requires OK to be

a complete local domain such that [p]Fα is right-cancellative and the definition and properties

of the Coleman norm operator over OK in Section 2. Therefore, we need only show that lp is

right-cancellative and generalize Theorem 2.3 and Lemma 2.4 to the case of a complete local

domain R such that p 6= 0 and residue field contains k substituting [p]F by lp. The proof then

applies mutatis mutandis.

Remark 5.1. In the general case, we do not requireG to be a Honda formal group law and F to

be a Lubin–Tate formal group law as in Section 3, since the property that [p]F ≡ T p
n

mod m

has been replaced by Remark 4.7(c).

Lemma 5.2. The power series lp is right-cancellative, i.e., if there are g, h ∈ RJT K such that

g ◦ lp = h ◦ lp, we have g = h.

Proof. We may assume h = 0, so that g
(
lp(T )

)
= 0. Since R is complete with respect to m,

we need only prove by induction on i that g ≡ 0 mod mi for each i ⩾ 0. The statement is

vacuous for i = 0. Suppose we have proven that g ≡ 0 mod mi. Since lp(T ) ≡ T p
n

mod m

by Remark 4.7(c), g(T pn) ≡ 0 mod mi+1, and hence g ≡ 0 mod mi+1.

12



The following proofs essentially follow those in [Col79].

Lemma 5.3 (cf. [Col79, Lemma 3]). If g ∈ RJT K and g(T +F λ) = g(T ) for all λ ∈ Λ[p]F ,1,

then there is a unique h ∈ RJT K such that h ◦ lp = g.

Proof. The uniqueness follows from Lemma 5.2.

For the existence, we inductively construct formal power series gm for each m ⩾ 0. Let

g0 = g. Suppose that we have constructed ai ∈ R for 0 ⩽ i ⩽ m− 1 such that

g −
m−1∑
i=0

ail
i
p = lmp · gm

for some gm ∈ RJT K. Note that by assumption g(T +F λ) = g(T ) and by Remark 4.7(b)

lp(T+F λ) = lp(T ). We thus have gm(T+F λ) = gm(T ). In particular,
(
gm−gm(0)

)
(λ) = 0 for

all λ ∈ Λ[p]F ,1. By the Euclidean algorithm for power series, there exists elements gm+1 ∈ RJT K
with rm ∈ R[T ] such that gm − gm(0) = lp · gm+1 + rm and deg(rm) < pn. Then rm vanishes

on Λ[p]F ,1. Since we have deduced in the paragraph after (10) that Λ[p]F ,1 has pn elements, we

have rm = 0. Let am = gm(0). This finishes the inductive step. Thus, we obtain

g −
∞∑
i=0

ail
i
p ∈

∞∩
i=0

lipRJT K = 0

Then h(T ) :=
∑∞

i=0 aiT
i is the desired element.

Now we also endow RJT K with the compact–open topology similar to that onOKJT K as in
Section 2. Here R has the m-adic topology.

Theorem 5.4 (cf. Theorem 2.3). There is a unique operator NF : RJT K → RJT K such that for
any g ∈ RJT K,

NF (g) ◦ lp(T ) =
∏

λ∈Λ[p]F ,1

g(T +F λ)

Moreover, NF is multiplicative and continuous.

Proof. Note that the right-hand side of the above identity satisfies the condition of Λ[p]F ,1-

invariance from Lemma 5.3. Thus, there is a unique NF satisfying the formula.
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Given any g, h ∈ RJT K,
NF (gh) ◦ lp(T ) =

∏
λ∈Λ[p]F ,1

gh(T +F λ)

=
(
NF (g) ◦ lp(T )

)
·
(
NF (h) ◦ lp(T )

)
=

(
NF (g) · NF (h)

)
◦ lp(T )

By Lemma 5.2, we then obtain NF (gh) = NF (g) · NF (h).

Suppose {gn} converges to g. Then

(
limNF (gn)

)
◦ lp(T ) = lim

(
NF (gn) ◦ lp

)
(T ) = lim

∏
λ∈Λ[p]F ,1

gn(T +F λ)

=
∏

λ∈Λ[p]F ,1

g(T +F λ) = NF (g) ◦ lp(T )

Again, it follows from Lemma 5.2 that limNF (gn) = NF (g).

Note that in the proof in Section 3we only took limits ofNFα applied to elements in 1+mJT K
and to T . Thus, it remains to show the following for NF .

Lemma 5.5 (cf. Lemma 2.4). Let g ∈ 1 +miJT K and i ⩾ 1. Then

(a) NF (g) ∈ 1 +mi+1JT K and
(b) N i

F (T )/N
i−1
F (T ) ∈ 1 +miJT K.

Proof. (a) By definition, NF (g) ◦ lp(T ) =
∏

λ∈Λ[p]F ,1
g(T +F λ). Suppose g(T ) = 1 +∑∞

j=0 bjT
j , where bj ∈ mi. Since i ⩾ 1, terms divided by bj1bj2 for some j1, j2 must lie

in mi+1. Therefore, modulo mi+1,

NF (g) ◦ lp(T ) ≡ 1 +
∑

λ∈Λ[p]F ,1

∞∑
j=0

bj(T +F λ)
j

= 1 +
∞∑
j=0

∑
λ∈Λ[p]F ,1

bj(T +F λ)
j

= 1 +
∞∑
j=0

bj
(
pnT j +

∞∑
k=0

pk(Λ[p]F ,1)T
k
)

where each pk(Λ[p]F ,1) is a symmetric function on λ ∈ Λ[p]F ,1. Recall from Section

4 that β is a polynomial of degree pn dividing [p]F from the Weierstrass preparation
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theorem, and Λ[p]F ,1 is the set of roots of β. Thus, β(T ) ≡ T p
n

mod m. It follows that

pk(Λ[p]F ,1) ≡ 0 mod m, since pk(Λ[p]F ,1) is a polynomial in the non-leading coefficients

of β (i.e., those elementary symmetric functions). Therefore,

NF (g) ◦ lp(T ) ≡ 1 mod mi+1

Next we prove by induction on j that if h ∈ RJT K and h ◦ lp ∈ mjJT K, then h ∈ mjJT K
(here j ⩾ 0). Setting h = NF (g) − 1 completes the proof of part (a). The case is

vacuous when j = 0. Suppose j ⩾ 1 and the statement holds for j − 1. By the induction

hypothesis, h ∈ mj−1JT K. Since lp(T ) ≡ T p
n

mod m, we have

h ◦ lp(T ) ≡ h(T p
n

) mod mj

Since h ◦ lp ∈ mjJT K, we must have h ∈ mjJT K.
(b) By part (a) and the multiplicativity ofNF from Theorem 5.4, we need only show the case

when i = 1. Since lp(T ) ≡ T p
n

mod m,

NF (T )(T
pn) ≡ NF (T ) ◦ lp(T ) =

∏
λ∈Λ[p]F ,1

(T +F λ) mod m

By an argument with symmetric functions similar to that for part (a), we obtain that∏
λ∈Λ[p]F ,1

(T +F λ) ≡ T p
n

mod m. Hence, NF (T ) ≡ T mod m, so NF (T )/T ≡ 1

mod T−1mJT K. It remains to show that T divides NF (T ) in RJT K, or NF (T )(0) = 0.

Since 0 ∈ Λ[p]F ,1,

NF (T )(0) = NF (T ) ◦ lp(0) =
∏

λ∈Λ[p]F ,1

λ = 0

Remark 5.6. Comparing (5) from the proof in Section 3, we see that fp as defined in Section

4 now factors as NF (T ) ◦ lp. Recall that lp = gp ◦ fp by definition. By Lemma 5.2, lp is right-

cancellative with respect to composition, and hence so does fp. Therefore, NF (T ) turns out

to be the inverse to gp, i.e., it is a (necessarily unique) ⋆-isomorphism ρn∗tn∗Funiv → F/F [p].

This agrees with the construction of the coordinate associated with F/F [p] in Definition 4.1.
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In view of this, the proof in Section 3 is actually similar to the one for [And95, Theorem

2.6.4]. In [And95, Theorem 2.6.4], Ando constructed a series of ⋆-isomorphisms to modify the

coordinates such that gp(T ) can approximate T inductively modulomr. On the other hand, our

proof constructed a ⋆-isomorphism u = N ∞
F (T ) directly so that g−1

p (T ) = NF (T )(T ) = T

after a change of coordinate by u. Indeed, properties of this limit of operators (i.e., Lemma 2.4

and Lemma 5.5) are deduced inductively on r modulomr similar to the one in Ando’s construc-

tion. However, our proof cannot proceed by constructing a series of ⋆-isomorphisms, since

N ∞
F (T ) is not the infinite composite of NF (T ).

Remark 5.7. Walker has also observed the relationship between the Coleman norm operator

and Ando’s criterion [Wal08, Chapter 5]. In particular, he has deduced that Ando’s criterion

is equivalent to (6) in [Wal08, Lemma 5.0.5 and (5.0.10)]. However, he did not prove Theorem

1.1 via the Coleman norm operator.

Remark 5.8. As mentioned in Remark 1.3, Zhu generalized Theorem 4.8 to apply to arbitrary

complete local rings. To apply our proof to arbitrary complete local rings, we need to generalize

the Coleman norm operator to such cases. However, recall in the argument around (10), we

need R to be a domain so that we can count the number of roots of β, and we need p 6= 0 in

R so that β is separable. Thus, there is a question whether the Coleman norm operator can be

defined over arbitrary complete local rings.
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